Portal vein thrombosis

Portal vein thrombosis may be seen in a variety of clinical contexts, and when acute can be a life-threatening condition. It is a major cause of non-cirrhotic presinusoidal portal hypertension. Portal vein thrombus may be either bland and/or malignant (i.e. tumor thrombus), and it is a critical finding in liver transplant candidates, as it precludes transplantation.

The demographics of patients with portal venous thrombosis will match those of the underlying condition.

Clinical presentation is often vague and non-specific. If extensive acute thrombosis is present, especially if the superior mesenteric venous system is also involved, then the presentation is likely to be with acute ischemic bowel, mimicking superior mesenteric artery (SMA) occlusion.

Portal vein thrombosis, like thrombosis elsewhere, can occur due to disturbance of any one of the Virchow triad, and causes can be thought of in these terms 1,2:

Also, hepatocellular carcinoma (HCC) has a predilection for invading the portal vein, with tumor thrombus occluding the lumen 2.

Acutely only the thrombus may be evident, with associated findings related to the ischemic bowel (especially if significant superior mesenteric venous (SMV) involvement is also present).

In chronic cases, cavernous transformation of the portal vein may be seen, with numerous periportal veins replacing the normal single channel of the portal vein.

Acute thrombosis may be difficult to detect with grey-scale imaging alone, as the thrombus may be hypoechoic. With time, it becomes more echogenic and easier to identify 3. Color Doppler should be able to demonstrate absent flow in the portal vein and even to detect partial thrombosis, but attention to the Doppler gain and filters is necessary to avoid color overwrite of partial thrombosis.

The SMV, intrahepatic branches of the portal vein, and hepatic veins should also be examined, to assess the extent of thrombosis (NB: 20% of patients with Budd-Chiari syndrome will also have portal vein thrombosis) 2.

Color Doppler is also useful to help evaluate for tumor thrombus, which will show internal color vascularity. Bland thrombus, in comparison, is avascular on color Doppler.

Non-contrast scans are usually incapable of demonstrating the thrombus, except in some acute cases where the thrombus is hyperattenuating 2,4. In longstanding cases, low-density change in the liver may be evident, related to increased arterial supply, and representing fatty change

The diagnosis can only reliably be made on portal venous phase contrast-enhanced studies.

Findings include:

  • complete or partial non-opacification of part of, or the whole, portal vein and its branches
  • enhancement of the walls of the portal vein thought to represent either dilated vasa vasorum or a thin peripheral lumen remaining patent

When performing a hepatic CT protocol, the occlusion of a branch of the portal vein by a thrombus can manifest as transient hepatic attenuation differences (THAD) in the arterial/early portal phase, showing increased enhancement (i.e. perfusion) of the lobe or segment previously supplied by the vein due to hepatic arterial compensatory flow.

Importantly, the thrombus itself should not enhance. If enhancement is present, then this strongly suggests that the thrombus is not bland but rather represents tumor thrombus, most frequently from HCC 2

Cavernous transformation appears as multiple small periportal vessels, which represent dilated collateral veins. 

Associated findings of portal hypertension may, of course, be evident. 

Although MRI is not as widely available and can be difficult in unwell patients, it is the most sensitive modality for demonstrating portal venous thrombosis 2. 3D contrast-enhanced MRA is the most sensitive sequence. However, the differentiation between bland and tumor thrombus usually requires integrating multiple sequences and taking into account chronicity of the thrombosis. Appearances include:

  • T1
    • acute thrombus will have high signal (see aging blood on MRI)
    • beware slow or turbulent flow artefacts 
  • T2
    • acute thrombus may have high signal
    • chronic thrombus may be low and appear as flow voids
    • beware slow flow-related artefacts
    • tumor thrombus is typically hyperintense
  • T1 + C (Gad)
    • tumor thrombus enhancement may be detectable on postcontrast dynamic sequences
    • transient hepatic intensity differences (THID) may be seen in the arterial/early portal phase if the thrombus occludes only a branch of the portal vein, as the hepatic artery takes on the affected lobe/segment's perfusion
  • MR angiography
    • 3D contrast-enhanced MRA (98% sensitive and 99% specific) 2

18F-FDG PET/CT has demonstrated a promising ability to differentiate between bland thrombus and malignant (tumor thrombus) portal vein thrombosis 5-11. The optimal imaging protocol appears to be with hybrid imaging part state-of-the-art CT including IV iodinated contrast media 10. Demonstrated features are:

  • bland thrombus: no or slight FDG-avidity
  • tumor thrombus: moderately to highly FDG-avid
  • suggested optimal cutoff value: max SUV 2.3-3.6 8,11
  • possible visualization of further sites of thrombosis

Ideally, the presence of thrombosis is identified early and thrombolysis/thrombectomy performed to re-establish flow. This may avoid a possible long-term complication of portal hypertension, although portal vein thrombus often develops in a pre-existing setting of portal hypertension. Techniques that may be employed include 3:

  • systemic anticoagulation
  • endovascular infusion of thrombolytic agents: percutaneous transhepatic approach
  • surgical thrombectomy

Even with treatment, half of affected patients go on to chronic occlusion 3. Surgical shunt formation may be useful for patient with portal hypertension.

The most important differential is to distinguish bland thrombus from tumor thrombus. Tumor thrombus is a contraindication to liver transplantation and is accorded a special LI-RADS status, LR5V (see: LI-RADS classification)

Porta hepatis masses (e.g. lymph nodes, cholangiocarcinomas) may compress the portal vein and may be confused for portal vein thrombus. They may, of course, co-exist with portal vein thrombosis. 

Acute thrombosis, which is high attenuation on non-contrast CT, should be distinguished from other hyperattenuating masses in the region 4:

Hepatobiliary pathology
Share article

Article information

rID: 7114
Synonyms or Alternate Spellings:
  • Portal vein thrombus
  • Portal venous thrombosis
  • PV thrombosis
  • Portal venous thromboses

Support Radiopaedia and see fewer ads

Cases and figures

  • Portal vein throm...
    Case 1
    Drag here to reorder.
  • Case 2
    Drag here to reorder.
  • Portal vein throm...
    Case 3: portal vein thrombus with infarction
    Drag here to reorder.
  • Case 4: portal vein thrombus with calcification
    Drag here to reorder.
  • Case 5
    Drag here to reorder.
  • Case 6
    Drag here to reorder.
  • Case 7: HCC with portal vein tumor thrombosis
    Drag here to reorder.
  • Case 9: HCC with left PV thrombosis
    Drag here to reorder.
  • Case 10
    Drag here to reorder.
  • Case 11: malignant thrombus
    Drag here to reorder.
  • Case 12: malignant thrombus
    Drag here to reorder.
  • Case 13: malignant thrombus
    Drag here to reorder.
  • Case 14
    Drag here to reorder.
  • Case 15
    Drag here to reorder.
  • Case 16: Crohn disease
    Drag here to reorder.
  • Case 17: with periportal edema (pylephlebitis)
    Drag here to reorder.
  • Case 18: due to acute pancreatitis
    Drag here to reorder.
  • Case 19
    Drag here to reorder.
  • Case 20: due to calculous cholecystitis
    Drag here to reorder.
  • Case 21
    Drag here to reorder.
  • Updating… Please wait.

     Unable to process the form. Check for errors and try again.

     Thank you for updating your details.